
Concatenated Spatially Coupled LDPC Codes for

Joint Source-Channel Coding
Ahmad Golmohammadi and David G. M. Mitchell

Klipsch School of Electrical & Computer Engineering, New Mexico State University, Las Cruces, NM 88003, USA.

{golmoham, dgmm}@nmsu.edu

Abstract—In this paper, a method for joint source-channel cod-
ing (JSCC) based on concatenated spatially coupled low-density
parity-check (SC-LDPC) codes is investigated. A construction
consisting of two SC-LDPC codes is proposed: one for source
coding and the other for channel coding, with a joint belief
propagation-based decoder. Also, a novel windowed decoding
(WD) scheme is presented with significantly reduced latency
and complexity requirements. Simulation results show a notable
performance improvement compared to existing state-of-the-art
JSCC schemes based on LDPC codes.

I. INTRODUCTION

For infinite source and channel code block lengths, it is

known that arbitrarily high reliability can be attained if the

source entropy is less than the channel capacity by the “sep-

aration principle”, where source and channel coding are per-

formed separately [1]. On the other hand, in a non-asymptotic

regime with delay constraints, a joint source-channel design

can be more attractive [2], where the residual redundancy of

the source sequence can be used by the channel decoder to

improve channel decoding [3], [4].

Block error-correcting codes can be directly applied for

source coding where the decoder is used to compress the

source data and the encoder is used to reconstruct it [5],

[6]. This method was shown to be efficient for memoryless

symmetric sources under the Hamming distortion measure,

where the average distortion is measured as the average

fraction of source bits that are not correctly reconstructed [6].

However, for many sources, the source sequence is asymmetric

(e.g., sequences with a small number of ones), for which

syndrome source coding [7] can be an efficient method. In

syndrome source coding, the source sequence s is considered

as a channel error pattern e and the source encoder generates

the syndrome u = sH
T as the compressed data, where H

is the parity-check matrix of the linear error-correcting code.

At the receiver, the source decoder tries to produce a possible

error pattern ê consistent with u [7]. Low-density parity-check

(LDPC) codes [8] with a belief propagation (BP) algorithm

were proposed for syndrome source coding in [9] and then

further investigated with a noisy channel in [10].

Three methods of joint source-channel coding (JSCC) were

proposed in [10], specifically 1) two LDPC codes, 2) a

single LDPC code, and 3) Lotus codes. This paper is focused

on the first method, i.e., two LDPC codes, where LDPC

based syndrome source coding is then concatenated with an

LDPC channel encoder. Therefore, at the transmitter, there are

two concatenated LDPC codes that are applied sequentially.

At the receiver, the concatenated codes can be represented

as a single bipartite graph and jointly decoded by a BP

This material is based upon work by the National Science Foundation under
Grant No. CCSS-1710920.

algorithm. Related JSCC schemes have been successfully

employed using turbo codes [11], rate-compatible punctured

convolutional codes [12], and two concatenated regular LDPC

block codes [13].

Spatially coupled LDPC (SC-LDPC) codes can be obtained

by coupling together (connecting) a series of L disjoint LDPC

block codes to make a larger connected graph, and have been

shown to have excellent channel coding performance [14].

Closely related spatially coupled low-density generator matrix

(SC-LDGM) code ensembles were subsequently shown to

have excellent performance for lossy source compression [15],

[16]. In this paper, we present a construction of practically

interesting protograph-based concatenated (J,K)-regular SC-

LDPC codes for JSCC that can be encoded sequentially in

a convolutional fashion with syndrome source coding then

syndrome-former channel coding and decoded with a joint

BP decoder. Furthermore, we propose a novel low-latency

windowed decoding (WD) scheme for the concatenated SC-

LDPC-based system with significantly reduced latency and

complexity requirements. Simulation results for a binary mem-

oryless source and a binary input additive white Gaussian noise

(AWGN) channel show improved BER performance versus

comparable concatenated LDPC block codes.

II. LDPC-BASED JOINT SOURCE-CHANNEL CODING

In this section, we summarize the LDPC-based JSCC pro-

posed in [10]. As described above, the first LDPC code with

parity-check matrix H
sc is used to calculate the syndrome u

corresponding to the source input s, and a second (systematic)

LDPC code with parity-check matrix H
cc and generator matrix

G
cc is used to encode to the compressed sequence for trans-

mission through a noisy channel. For this system, a codeword

v is obtained as

v = uG
cc = (sHscT)Gcc, (1)

where H
sc is a l × n sparse binary parity-check matrix with

compression rate Rsc = l/n < 1, s is the length n binary

source input, u is the length l binary compressed source word,

and G
cc is the l ×m binary systematic LDPC channel code

generator matrix with code rate Rcc = l/m. Fig. 1 shows the

concatenated Tanner graphs used at the decoder, where each

variable node in the systematic part of the channel code with

parity-check matrix H
cc is connected to a check node in the

parity-check matrix H
sc of the source code. The overall code

rate is R = Rcc

Rsc
= n

m
.

We follow [13] and apply BP to the concatenated graph as

follows1: variable nodes send their message to check nodes at

1In [17], the two LDPC matrices (Hsc and H
cc) are combined as one

LDPC matrix and standard message passing applied between variable nodes
and check nodes; however, we chose to follow separated BP updates as applied
in [13].

Fig. 1. Concatenated LDPC Tanner graphs for JSCC.

iteration t as

msc,(t)
v→c = Lsc

v +
∑

c
′
6=c

m
sc,(t−1)

c
′
→v

, (2)

mcc,(t)
v→c = Lcc

v +msc→cc,(t−1)
v +

∑

c
′
6=c

m
cc,(t−1)

c
′
→v

, (3)

mcc→sc,(t)
v→c = Lcc

v +
∑

c
′
6=c

m
cc,(t−1)

c
′
→v

, (4)

mcc,(t)
v→c = Lcc

v +
∑

c
′

6=c

m
cc,(t−1)

c
′

→v
, (5)

where m
sc,(t)
v→c , m

cc,(t)
v→c , and m

cc→sc,(t)
v→c are the messages at

iteration t passed from the vth variable node to the cth

check node within the source graph H
sc, within the channel

graph H
cc, and between the channel and the source graphs,

respectively, and where Lsc
v and Lcc

v denote the log-likelihood

ratios (LLRs) for the variable nodes v = 1, . . . , n of the source

decoder and v = n + 1, . . . , n + m of the channel decoder,

respectively. We assume a memoryless Bernoulli source,

such that pv = P(sv = 1); therefore, for an additive white

Gaussian noise channel, Lsc
v = log(1−pv

pv
) and Lcc

v = 2rv
σ2
n

,

where rv is the received binary phase shifting keying (BPSK)

value for a symbol transmitted on a channel with noise

variance σ2
n. For check to variable messages, m

sc,(t)
c→v , m

cc,(t)
c→v ,

and m
sc→cc,(t)
c→v represent the messages passed from the cth

check node to the vth variable node within the source graph,

within the channel graph, and between the source and channel

graphs, respectively, given as

m
sc,(t)
c→v = 2 tanh−1



 tanh

(

m
cc→c,(t)
v

2

)

∏

v
′
6=v

tanh

(

m
sc,(t)

v
′
→c

2

)



 ,

(6)

m
sc→cc,(t)
c→v = 2 tanh−1





∏

v
′

tanh

(

m
sc,(t)

v
′
→c

2

)



 , (7)

m
cc,(t)
c→v = 2 tanh−1





∏

v
′
6=v

tanh

(

m
cc,(t)

v
′
→c

2

)



 . (8)

Note that m
sc,(0)
c→v = m

cc,(0)
c→v = msc→cc,(0) = 0.

Regarding the separation, note that (2) applies for variable

node indices v = 1, . . . , n, (3) and (4) for v = n+1, . . . , n+
1 + l, and (5) for v = n + l + 1, . . . , n + m. Equations (6)

and (7) apply for check node indices c = 1, . . . , l and (8)

for c = l + 1, . . . ,m. After I iterations of decoding, BP is

terminated by computing the LLR of each source bit sv, i.e.,

LLR(sv) = Lsc
v +

∑

c m
sc,(T)
c→v , whereby the vth source bit is

estimated as ŝv = 0 if LLR(sv) ≥ 0, and ŝv = 1 otherwise.

III. CONCATENATED SC-LDPC CODES FOR JSCC

In this section, we discuss protograph construction of SC-

LDPC code ensembles, present our concatenated construction

of SC-LDPC codes with an example, then describe the encod-

ing and decoding procedures.

A. SC-LDPC protographs

A protograph [18] is a small bipartite graph that connects

a set of nv variable nodes to a set of nc check nodes by a set

of edges, and it can be represented by a parity-check or base

biadjacency matrix B, where Bx,y is taken to be the number

of edges connecting variable node vy to check node cx. The

parity-check H of a protograph-based LDPC block code can

be created by expanding B using a lifting factor M , where

each non-zero entry in B is replaced by a sum of Bx,y non-

overlapping permutation matrices of size M × M and each

zero entry is replaced by the M × M all-zero matrix. An

important property of constructing codes from a protograph is

that each lifted code inherits the graph neighborhood structure

and degree distribution of the protograph.

1) Unterminated convolutional protographs: An untermi-

nated SC-LDPC code ensemble code can be represented by

means of a convolutional protograph [14] with base matrix

B[−∞,∞] =



















. . .
. . .

Bms
· · · B0

. . .
. . .

Bms
· · · B0

. . .
. . .



















, (9)

where ms is the syndrome former memory of the code and the

bc×bv component base matrices Bi, i = 0, . . . ,ms, determine

the edge connections from the bv variable nodes at time T to

the bc check nodes at time T + i. Starting from a bc × bv
block base matrix B, an “edge-spreading” procedure [14] can

be applied to obtain the component base matrices Bi, where

B0 + B1 + · · · + Bms
= B. An ensemble of time-varying

SC-LDPC codes can then be formed from B[−∞,∞] using the

protograph construction method described above. For example,

a (3, 6)-regular SC-LDPC code ensemble with ms = 2 can be

constructed from the block base matrix B = [3 3] by defining

the component base matrices B0 = [1 1] = B1 = B2.

2) Terminated SC-LDPC code ensembles: Suppose that we

start the convolutional code with parity-check matrix defined

in (9) at time T = 0 and terminate it after L time instants, the

resulting finite-length base matrix is then given by

B[0,L−1] =

















B0

.

..
. . .

Bms
B0

. . .
...

Bms

















(L+ms)bc×Lbv

. (10)

The matrix B[0,L−1] can be considered as the base matrix

of a terminated protograph-based SC-LDPC code ensemble.

Termination results in a rate loss: without puncturing, the

design compression rate for syndrome source coding with

B[0,L−1] is Rsc
L =

(

L+ms

L

)

bc
bv

whereas for channel coding the

design rate Rcc
L of the terminated code ensemble is equal to

Rcc
L = 1−

(

L+ms

L

)

bc
bv

. As the termination factor L increases,

the rate loss diminishes monotonically so that, as L → ∞,

Rsc
Lsc → Rsc = bc/bv and Rcc

Lcc → Rcc = 1 − bc/bv (the rates

of the unterminated convolutional code ensembles).

B. Concatenating SC-LDPC graphs

Our proposed concatenated SC-LDPC construction for

JSCC involves two SC-LDPC parity-check matrices with base

matrices given in (9) or (10), one for source compression,

H
sc, and another for channel coding, Hcc. Notationally, we

introduce superscripts to the parameters to indicate their use

in H
sc or Hcc, i.e., we add superscripts to Bi, bc, bv, ms, M ,

and L. We note that, in order for the scheme to work, we must

select bsc
c M

sc = (bcc
v − bcc

c)M
cc. We restrict our constructions

to have M sc = M cc = M , implying bsc
c = bcc

v − bcc
c . We

also choose to set msc
s = mcc

s = ms thus if the codes are

terminated (using base matrices in (10)), we must further

have Lsc + ms = Lcc − ms and we denote the length of

the concatenated scheme as L = Lsc. The overall coding rate

for the terminated scheme is RL =
Rcc

L

Rsc
L

and, as L → ∞, the

overall coding rate approaches R = Rcc

Rsc =
bsc
v

bcc
v

, the rate of the

unterminated JSCC scheme.

We now provide a working example for use in this paper,

but it can be easily generalized. In our example, both channel

and source encoder have memory ms = 2 and M sc = M cc.

We require Lcc = Lsc + 4 and use the notation L = Lsc

for the concatenated design. We use component matrices

B
sc
0 = B

sc
1 = B

sc
2 = [1 1 1 1] to construct H

sc
[0,L−1], with

compression rate Rsc
L =

(

L+ms

L

) bsc
c

bsc
v

−−−−→
L→∞

bsc
c

bsc
v

= 1
4 and

component matrices B
cc
0 = B

cc
1 = B

cc
2 = [1 1] with channel

code rate Rcc
L = 1 −

(

L+4+ms

L+4

)

bcc
c

bcc
v

−−−−→
L→∞

1 − bcc
c /b

cc
v = 1

2 .

The overall coding rate RL =
Rcc

L

Rsc
L

−−−−→
L→∞

2.

The protograph of the proposed construction is shown in

Fig. 2. In order to be able to use H
cc directly for systematic

encoding of the syndrome u, we connect the protographs such

that, at each time instant, the left entry of B
cc
0 (top variable

node in Fig. 2) connects to the check node of Bsc at that time

- this connects the systematic bits of the channel code to the

syndrome of the source. When lifting, we must also restrict

the permutation matrix associated with the right most entry of

B
cc
0 (the M nodes that contain the parity bits of the codeword

v) to be replaced with the M × M identity matrix. This is

required for syndrome-former encoding (see Section III-C).

We note that the identity matrix restriction could be achieved

by simple column permutations of the H
cc matrix after an

arbitrary lifting.

C. Encoding concatenated SC-LDPC codes

We begin this section by defining the notation required

to describe the encoding process. Equation (11) shows the

target symbols (time T) target symbols (time T+1)
source SC-LDPC H

channel SC-LDPC H
W=3

sc

cc

Fig. 2. Concatenated protographs of SC-LDPC codes for JSCC. Also
illustrated is the WD procedure with window size W = 3.

transposed parity check matrix obtained after graph lifting (9),

called the syndrome former matrix

H
T
[−∞,∞] =



















. . .
. . .

H
T
0 (0) · · · H

T
ms

(ms)
. . .

. . .

H
T
0 (T) · · · H

T
ms

(T +ms)
. . .

. . .



















,

(11)

where the submatrices Hi, i = 0, 1, . . . ,ms, are defined as

Hi(T) =







h
(1,1)
i (T) · · · h

(1,bvM)
i (T)

...
...

h
(bcM,1)
i (T) · · · h

(bcM,bvM)
i (T)







bcM×bvM

.

(12)

1) Step 1: syndrome source coding: Suppose an infor-

mation sequence s[0,∞] is defined as s[0,∞] = [s0, s1, . . .],
where si is a source block of length bsc

v M . We obtain the

compressed syndrome u[0,∞] = [u0,u1, . . .] = s[0,∞]H
scT

[0,∞],

where ui = siH
scT

0 (i)+ si−1H
scT

1 (i)+ · · ·+ si−ms
H

scT

ms
(i) =

(u
(1)
i , u

(2)
i , . . . , u

(bsc
c
M)

i). Note that syndrome source coding

can be performed block-by-block in a streaming fashion with

memory provided for the previous ms blocks.

2) Step 2: syndrome former-based channel encoding:

The channel encoder then encodes the compressed binary

information sequence u[0,∞] into the binary code sequence

v[0,∞] = [v0,v1, . . .], where vi = (v
(1)
i , v

(2)
i , · · · , v

(bcc
v
M)

i).
The resulting code sequence v[0,∞] satisfies v[0,∞]H

T
[0,∞] = 0.

By design, our Hcc
[0,∞] defines a systematic convolutional code

of rate R = 1 − bcc
v /b

cc
c . In [19], two methods are introduced

to encode u[0,∞] into v[0,∞]: 1) syndrome former realization

and 2) partial syndrome former realization.

a) Syndrome Former Realization: Systematic encoding

can be performed as [19]

v
(j)
i = u

(j)
i , j = 1, . . . , (bcc

v − bcc
c)M, (13)

v
(j)
i =

(bcc
v
−bcc

c
)M

∑

k=1

v
(k)
i h

(j−(bcc
v
−bcc

c
)M,k)

0 (i)

+

ms
∑

c=1

bcc
v
M

∑

k=1

v
(k)
i−ch

(j−(bcc
v
−bcc

c
)M,k)

c (i),

j = (bcc
v − bcc

c)M + 1, . . . , bcc
v M. (14)

b) Partial Syndrome Former Realization: For termination

of an SC-LDPC encoder, the information sequences need to

be terminated with a sequence of symbols that causes the

encoder to reset to the zero state at the end of encoding.

While conventional polynomial convolutional encoders use a

sequences of zeros as the terminating tail, SC-LDPC encoders

use non-zero sequences for the terminating tail, which depend

on the encoded information symbols and are needed to solve

a system of linear equations. Details are omitted here due to

space constraints, but the interested reader can refer to [19]

for a full description of the partial syndrome former realization

method to terminate the encoder.

In this paper, we applied the partial syndrome former

method for encoding the last ms sections of v[0,L+4−1] (the

termination tail); for all other sections we use the syndrome

former realization method directly. The tail length is variable,

codes having tail lengths of τ = 2(ms + 1) were used and

any longer tails were rejected (about 50% of all randomly

generated codes).

D. Windowed Decoding (WD) Scheme

For practical implementation of concatenated SC-LDPC

codes for JSCC with large coupling length L, it is essential

to reduce the decoding latency. To this end, we propose a

joint sliding window decoder, where a window of size W
(containing W sections of the concatenated graph) slides over

the concatenated graph from left to right. This is a similar

concept to the sliding window decoder for channel coding

with SC-LDPC codes [20], but here the windowed scheme is

applied simultaneously to the source and channel SC-LDPC

graphs. At each window position, the BP algorithm described

in Section II is applied to the variable and check nodes

within the window (also using necessary information from

past variable/check nodes) in order to decode one block of

source symbols, called target symbols. After decoding the set

of target symbols (i.e., when they are all assigned 0 or 1),

the window slides one section to the right and again executes

the BP algorithm to decode the next set of target symbols,

using both the nodes in the window and some previously

decoded target symbols. Fig. 2 illustrates WD at time T and

T + 1 with window size W = 3 (covering 3 graph sections,

or 6M channel code symbols and 12M source symbols) on

the concatenated SC-LDPC codes. Here 2M channel code and

4M source symbols enter the window at each window position

and 4M reconstructed source symbols leave (are decoded). In

this paper, we refer to the latency of the WD scheme as the

number of channel code symbols in the window, i.e., how

many channel symbols we need to process before we can

decode a set of target source symbols.

IV. NUMERICAL RESULTS

In this section, we present numerical results for WD of

unterminated concatenated (3, 6)- and (3, 12)-regular SC-

LDPC codes for JSCC. Simulation results were obtained with

a binary input AWGN channel and the source symbols are

assumed to be i.i.d. with P(sv = 1) = pv = 0.02. Results

were obtained by averaging over 100000 block samples and

Eb/N0

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

B
E
R

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

M = 80

M = 120

M = 160

M = 200

M = 240

Fig. 3. JSCC performance of SC-LDPC codes with increasing M .

Eb/N0

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

B
E
R

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

W = 4

W = 6

W = 8

W = 10

W = 12

W = 16

W = 18

Fig. 4. JSCC performance of SC-LDPC codes with increasing W .

a fixed number of I = 30 iterations per window position was

performed.2

A. Performance of concatenated SC-LDPC codes

1) Effect of increasing the lifting factor M : Fig. 3 shows

the effect of increasing the lifting factor M (improving code

strength) with a fixed window size W = 10. The resulting

latency is 2MW = 20M . We observe improving performance

as M is increased through M = 80, 120, 160, 200, and 240,

as expected. The flat error floors occur due to the source

distortion. Indeed, no such floor is observed in BER plots for

the channel coding part only.
2) Effect of the window size W : Fig. 4 shows the JSCC

performance with increasing window size W = 4, 6, 8, 10, 12
(improving decoder strength) but fixed M = 200; recall that

the decoding latency is equal to 2MW = 400W . For a fixed

code strength, we observe again that the BER improves with

increasing latency since the decoder performance is improving;

however, we see that after a certain point, the improvement

diminishes as W is further increased. Our results indicate that,

for a fixed latency, one has to carefully consider the trade-off

between M and W .

B. Comparison with concatenated LDPC block codes

In this section, we present WD results with code and

decoder parameters chosen such that we obtain latencies equal

2Stopping rules could be included to reduce the number of iterations
performed in many cases. This is the subject of ongoing work.

Eb/N0

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

B
E
R

10
-5

10
-4

10
-3

10
-2

10
-1

LDPC n = 1600, I = 30

LDPC n = 1600, I = 100

SC-LDPC M = 200,W = 4

SC-LDPC M = 133,W = 6

SC-LDPC M = 80,W = 10

Fig. 5. Equal latency comparison (1600 bits) of concatenated SC-LDPC
codes vs. LDPC block codes.

to 1600 and 3200 bits. We then compare with the concatenated

block LDPC code designs for JSCC given in [13].3 To

model the codes from [13], we used a regular protograph

construction with B
sc = 13×12 and B

cc = 13×6, connected

as described in Section II. The overall coding rate is R = 2,

the same as our unterminated construction, and the regularity

(edge complexity) of parity-check matrices is the same. We

considered block decoders with both I = 30 and I = 100
iterations.

Fig. 5 shows the results obtained for latency 1600 bits. We

observe that for window size W = 4 and M = 200, the block

code scheme outperforms the WD scheme due to the window

size limiting the performance. For W = 6, the performance

is similar to the LDPC block code in the waterfall, but the

small window results in a higher error floor. As W increases

to 10, the SC-LDPC code outperforms the LDPC block code

for all Eb/N0. Fig. 6 compares results of the LDPC block

code scheme of length 3200 bits with WD results with latency

3200 bits. In this case, each of the parameter sets chosen for

the SC-LDPC codes outperform the LDPC block codes in the

waterfall, with similar error floor performance. We remark that

for larger latencies, where W can be chosen sufficiently large

to not limit the performance, SC-LDPC codes hold significant

promise for JSCC.

V. CONCLUSION

In this paper we introduced a new construction of concate-

nated SC-LDPC codes based on protographs for joint source-

channel coding and proposed a novel windowed decoding al-

gorithm. Simulation results showed that the proposed decoder

has good source reconstruction performance for moderate

decoding latency. There are several features of the scheme

that can be improved, such as including stopping rules for

BP to reduce complexity and designing good convolutional

protographs that permit shorter window size. These features,

along with comparisons to other decoding algorithms, are the

subject of ongoing work.

3Similar performance gains to those found for block decoding in [13] were
observed for joint window decoding of concatenated SC-LDPC codes when
compared to cascade decoding (where, prior to source decoding, the channel
code is decoded independently assuming equally likely i.i.d. compressed bits
from the source). The results are omitted due to space constraints.

Eb/N0

-1.5 -1 -0.5 0 0.5 1 1.5 2

B
E
R

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

LDPC n = 3200, I = 30

LDPC n = 3200, I = 100

SC-LDPC M = 200,W = 8

SC-LDPC M = 160,W = 10

SC-LDPC M = 133,W = 12

Fig. 6. Equal latency comparison (3200 bits) of concatenated SC-LDPC
codes vs. LDPC block codes.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” Bell Sys.
tech. J., vol. 27, pp. 379-423, 623-656, Jul.-Oct. 1948.

[2] J. L. Massey, “Joint source and channel coding,” Communication Sys-
tems and Random Process Theory, vol. 11, pp. 279-293, Sijthoff and
Nordhoff, 1978.

[3] G. Buch, F. Burkert, J. Hagenauer, and B. Kukla, “To compress or not to
compress?” Proc. IEEE Global Comm. Conference, pp.198-203, 1996.

[4] J. Hagenauer, “Source-controlled channel decoding,” IEEE Trans. Com-
munications, pp. 2449-57, 1995.

[5] F. Jelinek, “Tree encoding of memoryless time-discrete sources with a
fidelity criterion,” IEEE Trans. Inf. Theory, vol. 15, no. 5, pp. 584-590,
1969.

[6] T. J. Goblick, “Coding for a discrete information source with a distortion
measure,” PhD diss., Massachusetts Institute of Technology, 1963.

[7] T. C. Ancheta, “Syndrome-source-coding and its universal generaliza-
tion,” IEEE Trans. on Inf. Theory, vol. 22, no.4, pp. 432-436, July 1976.

[8] R. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. theory,
vol. 8, no. 1, pp. 21-28, 1962.

[9] G. Caire, S. Shamai, and S. Verdú, “A new data compression algorithm
for sources with memory based on error correcting codes,” Proc. IEEE
Inf. Theory Workshop, pp. 291-295, 2003.

[10] G. Caire, S. Shamai, and Sergio Verdú, “Almost-noiseless joint source-
channel coding-decoding of sources with memory,” Proc. Int. ITG Conf.
on Source and Channel Coding, pp. 295-304, 2004.

[11] Z. Peng, Y. Huang, and D. J. Costello, “Turbo codes for image
transmission-a joint channel and source decoding approach,” IEEE J.
Sel. Areas in Comm., vol. 18, no. 6, pp. 868-879, 2000.

[12] L. P. Kondi, F. Ishtiaq, and A. K. Katsaggelos, “Joint source-channel
coding for motion-compensated DCT-based SNR scalable video,” IEEE
Trans. Image Processing, vol. 11, no. 9, pp. 1043-1052, 2002.

[13] M. Fresia, F. Perez-Cruz, and H. Poor, “Optimized concatenated LDPC
codes for joint source-channel coding,” Proc. IEEE Int. Symp. Inf.
Theory, pp. 2131-2135, Jun. 2009.

[14] D. G. M. Mitchell, M. Lentmaier, D. J. Costello, “Spatially Coupled
LDPC Codes Constructed From Protographs,” IEEE Trans. Inf. Theory,
vol. 61, no. 9, pp. 4866-4889, Sept. 2015.

[15] V. Aref, N. Macris, M. Vuffray, “Approaching the Rate-Distortion Limit
With Spatial Coupling, Belief Propagation, and Decimation,” IEEE
Trans. Inf Theory, vol. 61, no. 7, pp. 3954-3979, July 2015.

[16] A. Golmohammadi, D. G. M. Mitchell, J. Kliewer, and D. J. Costello,
“Windowed encoding of spatially coupled LDGM codes for lossy source
compression,” Proc. IEEE Int. Symp. Inf. Theory, pp. 2084-2088, 2016.

[17] H. V. Beltrão Neto and W. Henkel, “Multi-Edge Optimization of Low-
Density Parity-Check Codes for Joint Source-Channel Coding,” Proc.
Int. ITG conference on Systems, Communications and Coding, Jan. 2013.

[18] J. Thorpe,“Low-density parity-check (LDPC) codes constructed from
protographs,” Jet Propulsion Laboratory, Pasadena, CA, INP Progress
Report 42-154, Aug. 2003.

[19] A. E. Pusane, A.J. Feltstrom, A. Sridharan, M. Lentmaier, K. Zigangirov,
and D.J. Costello, “Implementation aspects of LDPC convolutional
codes,” IEEE Trans. Comm., vol. 56, no. 7, pp. 1060-1069, Jul. 2008.

[20] A. R. Iyengar, M. Papaleo, P. H. Siegel, J. K. Wolf, A. Vanelli-Coralli,
and G. E. Corazza, “Windowed decoding of protograph-based LDPC
convolutional codes over erasure channels.” IEEE Trans. Inf. Theory,
vol. 58, no. 4, pp. 2303-2320, 2012.

